Repeat mild traumatic brain injuries (RmTBI) modify nociception and disrupt orexinergic connectivity within the descending pain pathway

反复轻度创伤性脑损伤 (RmTBI) 会改变痛觉并破坏下行疼痛通路中的食欲素连接

阅读:5
作者:Jennaya Christensen, Naomi MacPherson, Crystal Li, Glenn R Yamakawa, Richelle Mychasiuk

Abstract

Repeat mild traumatic brain injuries (RmTBI) result in substantial burden to the public health system given their association with chronic post-injury pathologies, such as chronic pain and post-traumatic headache. Although this may relate to dysfunctional descending pain modulation (DPM), it is uncertain what mechanisms drive changes within this pathway. One possibility is altered orexinergic system functioning, as orexin is a potent anti-nociceptive neuromodulator. Orexin is exclusively produced by the lateral hypothalamus (LH) and receives excitatory innervation from the lateral parabrachial nucleus (lPBN). Therefore, we used neuronal tract-tracing to investigate the relationship between RmTBI and connectivity between lPBN and the LH, as well as orexinergic projections to a key site within the DPM, the periaqueductal gray (PAG). Prior to injury induction, retrograde and anterograde tract-tracing surgery was performed on 70 young-adult male Sprague Dawley rats, targeting the lPBN and PAG. Rodents were then randomly assigned to receive RmTBIs or sham injuries before undergoing testing for anxiety-like behaviour and nociceptive sensitivity. Immunohistochemical analysis identified distinct and co-localized orexin and tract-tracing cell bodies and projections within the LH. The RmTBI group exhibited altered nociception and reduced anxiety as well as a loss of orexin cell bodies and a reduction of hypothalamic projections to the ventrolateral nucleus of the PAG. However, there was no significant effect of injury on neuronal connectivity between the lPBN and orexinergic cell bodies within the LH. Our identification of structural losses and the resulting physiological changes in the orexinergic system following RmTBI begins to clarify acute post-injury mechanistic changes that drive may drive the development of post-traumatic headache and the chronification of pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。