A 7-Amino Acid Peptide Mimic from Hepatitis C Virus Hypervariable Region 1 Inhibits Mouse Lung Th9 Cell Differentiation by Blocking CD81 Signaling during Allergic Lung Inflammation

丙型肝炎病毒高变区 1 的 7-氨基酸肽模拟物通过阻断过敏性肺部炎症期间的 CD81 信号传导来抑制小鼠肺 Th9 细胞分化

阅读:4
作者:Wanzhou Zhao, Conghao Tan, Xi Yu, Ruihe Yu, Qibing Mei, Yun Cheng

Abstract

T helper (Th) cells orchestrate allergic lung inflammation in asthma pathogenesis. Th9 is a novel Th cell subset that mainly produces IL-9, a potent proinflammatory cytokine in asthma. A 7-amino acid peptide (7P) of the hypervariable region 1 (HVR1) of hepatitis C virus has been identified as an important regulator in the type 2 cytokine (IL-4, IL-5, and IL-13) immune response. However, it is unknown whether 7P regulates Th9 cell differentiation during ovalbumin- (OVA-) induced allergic lung inflammation. To address this, we studied wild-type mice treated with 7P and a control peptide in an in vivo mouse model of OVA-induced allergic inflammation and an in vitro cell model of Th9 differentiation, using flow cytometry, cytokine assays, and quantitative PCR. The binding of 7P to CD81 on naïve CD4+ T cells during lung Th9 differentiation was determined using CD81 overexpression and siRNA knockdown analyses. Administration of 7P significantly reduced Th9 cell differentiation after OVA sensitization and exposure. 7P also inhibited Th9 cell differentiation from naïve and memory CD4+ T cells in vitro. Furthermore, 7P inhibited the differentiation of human Th9 cells with high CD81 expression from naïve CD4+ T cells by blocking CD81 signaling. CD81 siRNA significantly reduced Th9 cell differentiation from naïve CD4+ T cells in vitro. Interestingly, CD81 overexpression in human naïve CD4+ T cells also enhanced Th9 development in vitro. These data indicate that 7P may be a good candidate for reducing IL-9 production in asthma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。