Simultaneous induction of vasculature and neuronal network formation on a chip reveals a dynamic interrelationship between cell types

在芯片上同时诱导血管和神经元网络形成揭示了细胞类型之间的动态相互关系

阅读:5
作者:Lotta Isosaari, Hanna Vuorenpää, Alma Yrjänäinen, Fikret Emre Kapucu, Minna Kelloniemi, Toni-Karri Pakarinen, Susanna Miettinen, Susanna Narkilahti

Background

Neuronal networks receive and deliver information to regulate bodily functions while the vascular network provides oxygen, nutrients, and signaling molecules to tissues. Neurovascular interactions are vital for both tissue development and maintaining homeostasis in adulthood; these two network systems align and reciprocally communicate with one another. Although communication between network systems has been acknowledged, the lack of relevant in vitro models has hindered research at the mechanistic level. For example, the current used in vitro neurovascular models are typically established to be short-term (≤ 7 days) culture models, and they miss the supporting vascular mural cells.

Conclusions

Overall, our study provides a novel human neurovascular network model that is applicable for creating in vivo-like tissue models with intrinsic neurovascular interactions. The 3D neurovascular network model on chip forms an initial platform for the development of vascularized and innervated organ-on-chip and further body-on-chip concepts and offers the possibility for mechanistic studies on neurovascular communication both under healthy and in disease conditions. Video Abstract.

Methods

In this study, we utilized human induced pluripotent stem cell (hiPSC) -derived neurons, fluorescence tagged human umbilical vein endothelial cells (HUVECs), and either human bone marrow or adipose stem/stromal cells (BMSCs or ASCs) as the mural cell types to create a novel 3D neurovascular network-on-a-chip model. Collagen 1-fibrin matrix was used to establish long-term (≥ 14 days) 3D cell culture in a perfusable microphysiological environment.

Results

Aprotinin-supplemented endothelial cell growth medium-2 (EGM-2) supported the simultaneous formation of neuronal networks, vascular structures, mural cell differentiation, and the stability of the 3D matrix. The formed neuronal and vascular networks were morphologically and functionally characterized. Neuronal networks supported vasculature formation based on direct cell contacts and by dramatically increasing the secretion of angiogenesis-related factors in multicultures in contrast to cocultures without neurons. Both utilized mural cell types supported the formation of neurovascular networks; however, the BMSCs seemed to boost neurovascular networks to greater extent. Conclusions: Overall, our study provides a novel human neurovascular network model that is applicable for creating in vivo-like tissue models with intrinsic neurovascular interactions. The 3D neurovascular network model on chip forms an initial platform for the development of vascularized and innervated organ-on-chip and further body-on-chip concepts and offers the possibility for mechanistic studies on neurovascular communication both under healthy and in disease conditions. Video Abstract.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。