Protective effects of cilostazol via the HNF1α/FXR signalling pathway and anti-apoptotic mechanisms in a rat model of estrogen-induced intrahepatic cholestasis

西洛他唑通过 HNF1α/FXR 信号通路和抗凋亡机制对雌激素诱导的肝内胆汁淤积大鼠模型发挥保护作用

阅读:6
作者:Marwa Hassan, Maha B Salem, Olfat A Hammam, Mohamed ElZallat

Abstract

Currently, there is a lack of targeted medications for estrogen-induced intrahepatic cholestasis (EIC) and the primary objective in managing this condition is to safeguard liver function. Consequently, this study was conducted to examine the pharmacological efficacy of cilostazol (CTZ) in the management of EIC and explore its underlying mechanisms through the use of an animal model. Thirty female Sprague-Dawley rats were divided into five groups of six animals each: Normal group, 17-ethinylestradiol (EE)-induced intrahepatic cholestasis group, EE + ursodeoxycholic acid (UDCA)-treated group, EE + CTZ (5 mg/kg)-treated group, and EE + CTZ (10 mg/kg)-treated group. It was found that the therapeutic efficacy of UDCA and low dosage of CTZ (5 mg/kg) was comparable. Nevertheless, when CTZ was administered at a dose of 10 mg/kg, it resulted in the normalization of all liver function parameters, oxidative stress, and pro-inflammatory markers, together with improvement in the histopathological derangements and hepatocytic apoptosis. These effects were mediated through the activation of the hepatocyte nuclear factor-1 alpha (HNF1α)/Farnesoid X receptor (FXR) pathway with subsequent down-regulation of the bile acids (BAs) synthesis enzyme; cholesterol 7α-hydroxylase (CYP7A1), and up-regulation of the BAs-metabolizing enzyme; cytochrome P450 (CYP)3A1 and the bile salt export pump; BSEP. Therefore, the administration of CTZ in a dose-dependent manner can protect against EIC through regulating the HNF1α/FXR pathway and anti-apoptotic mechanisms. This implies that CTZ exhibits considerable promise as a therapeutic agent for the treatment of cholestatic liver disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。