A chromosome level reference genome of Diviner's sage (Salvia divinorum) provides insight into salvinorin A biosynthesis

占卜鼠尾草 (Salvia divinorum) 的染色体水平参考基因组为了解鼠尾草素 A 的生物合成提供了见解

阅读:9
作者:Scott A Ford, Rob W Ness, Moonhyuk Kwon, Dae-Kyun Ro, Michael A Phillips

Background

Diviner's sage (Salvia divinorum; Lamiaceae) is the source of the powerful hallucinogen salvinorin A (SalA). This neoclerodane diterpenoid is an agonist of the human Κ-opioid receptor with potential medical applications in the treatment of chronic pain, addiction, and post-traumatic stress disorder. Only two steps of the approximately twelve step biosynthetic sequence leading to SalA have been resolved to date.

Conclusions

This genome sequence and associated gene annotation are among the highest resolution in Salvia, a genus well known for the medicinal properties of its members. Here we have identified the cohort of genes responsible for the remaining steps in the SalA pathway. This genome sequence and associated candidate genes will facilitate the elucidation of SalA biosynthesis and enable an exploration of its full clinical potential.

Results

To facilitate pathway elucidation in this ethnomedicinal plant species, here we report a chromosome level genome assembly. A high-quality genome sequence was assembled with an N50 value of 41.4 Mb and a BUSCO completeness score of 98.4%. The diploid (2n = 22) genome of ~ 541 Mb is comparable in size and ploidy to most other members of this genus. Two diterpene biosynthetic gene clusters were identified and are highly enriched in previously unidentified cytochrome P450s as well as crotonolide G synthase, which forms the dihydrofuran ring early in the SalA pathway. Coding sequences for other enzyme classes with likely involvement in downstream steps of the SalA pathway (BAHD acyl transferases, alcohol dehydrogenases, and O-methyl transferases) were scattered throughout the genome with no clear indication of clustering. Differential gene expression analysis suggests that most of these genes are not inducible by methyl jasmonate treatment. Conclusions: This genome sequence and associated gene annotation are among the highest resolution in Salvia, a genus well known for the medicinal properties of its members. Here we have identified the cohort of genes responsible for the remaining steps in the SalA pathway. This genome sequence and associated candidate genes will facilitate the elucidation of SalA biosynthesis and enable an exploration of its full clinical potential.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。