iTRAQ-based Quantitative Proteomics Analysis Identifies Host Pathways Modulated during Toxoplasma gondii Infection in Swine

基于 iTRAQ 的定量蛋白质组学分析鉴定了猪弓形虫感染过程中调节的宿主途径

阅读:8
作者:Jun-Jun He, Jun Ma, Jin-Lei Wang, Fu-Kai Zhang, Jie-Xi Li, Bin-Tao Zhai, Hany M Elsheikha, Xing-Quan Zhu

Abstract

Toxoplasma gondii is a leading cause of foodborne illness and consumption of undercooked pig meat is a major risk factor for acquiring toxoplasmosis, which causes a substantial burden on society. Here, we used isobaric tags for relative and absolute quantification (iTRAQ) labelling coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify cellular proteins and pathways altered during T. gondii infection in pigs. We also used parallel reaction monitoring-based LC-MS/MS to verify the levels of protein expression of infected spleens and mesenteric lymph nodes (MLNs). At 6 days post-infection (dpi), 156, 391, 170, 292, and 200 differentially expressed proteins (DEPs) were detected in the brain, liver, lung, MLNs and spleen, respectively. At 18 dpi, 339, 351, 483, 388, and 303 DEPs were detected in the brain, liver, lung, MLNs and spleen, respectively. Although proteins involved in immune responses were upregulated in all infected tissues, protein expression signature in infected livers was dominated by downregulation of the metabolic processes. By weighted gene co-expression network analysis, we could further show that all proteins were clustered into 25 co-expression modules and that the pink module significantly correlated with the infection status. We also identified 163 potential anti-T. gondii proteins (PATPs) and provided evidence that two PATPs (HSP70.2 and PDIA3) can reduce T. gondii burden in porcine macrophages in vitro. This comprehensive proteomics analysis reveals new facets in the pathogenesis of T. gondii infection and identifies key proteins that may contribute to the pig's defense against this infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。