Arabidopsis root responses to salinity depend on pectin modification and cell wall sensing

拟南芥根对盐度的反应取决于果胶修饰和细胞壁感应

阅读:5
作者:Nora Gigli-Bisceglia, Eva van Zelm, Wenying Huo, Jasper Lamers, Christa Testerink

Abstract

Owing to its detrimental effect on plant growth, salinity is an increasing worldwide problem for agriculture. To understand the molecular mechanisms activated in response to salt in Arabidopsis thaliana, we investigated the Catharanthus roseus receptor-like kinase 1-like family, which contains sensors that were previously shown to be involved in sensing the structural integrity of the cell walls. We found that herk1 the1-4 double mutants, lacking the function of HERKULES1 (HERK1) and combined with a gain-of-function allele of THESEUS1 (THE1), strongly respond to salt application, resulting in an intense activation of stress responses, similarly to plants lacking FERONIA (FER) function. We report that salt triggers pectin methyl esterase (PME) activation and show its requirement for the activation of several salt-dependent responses. Because chemical inhibition of PMEs alleviates these salt-induced responses, we hypothesize a model in which salt directly leads to cell wall modifications through the activation of PMEs. Responses to salt partly require the functionality of FER alone or HERK1/THE1 to attenuate salt effects, highlighting the complexity of the salt-sensing mechanisms that rely on cell wall integrity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。