Overcoming ABCG2-mediated multidrug resistance by a mineralized hyaluronan-drug nanocomplex

通过矿化透明质酸药物纳米复合物克服 ABCG2 介导的多药耐药性

阅读:6
作者:Wei Chen, Fang Wang, Xu Zhang, Jing Hu, Xiaokun Wang, Ke Yang, Liyan Huang, Meng Xu, Qingshan Li, Liwu Fu

Abstract

Multidrug resistance (MDR), caused by the overexpression of ATP-binding cassette (ABC) transporters on the cell membrane, is a major obstacle in the chemotherapy of cancers. Among various transporters, ATP-binding cassette subfamily G member 2 (ABCG2) has garnered increasing attention as it has been proven to play a critical role in various cancer cells and even in many cancer stem cells. In this study, we developed a novel multicomponent nanocomplex by using a simple hyaluronan-based biomimetic mineralization reaction to simultaneously encapsulate a tyrosine kinase inhibitor (afatinib) as a non-traditional ABCG2 inhibitor and an anticancer drug (doxorubicin) as an apoptosis inducer. The resulting nanocomplex can achieve a highly synergistic effect to overcome ABCG2-mediated MDR by synchronously enhancing drug uptake and inhibiting drug efflux. It follows that a spatial-temporal synchronization of multiple components via a targeted biomimetic pathway would hold great promise for chemotherapy of ABCG2-mediated resistant cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。