Substance P failed to reverse dextran sulfate sodium-induced murine colitis mediated by mitochondrial dysfunction: implications in ulcerative colitis

物质无法逆转由线粒体功能障碍介导的葡聚糖硫酸钠诱发的小鼠结肠炎:对溃疡性结肠炎的影响

阅读:5
作者:Spoorthi B Chandraiah, Shashwati Ghosh, Ishita Saha, Sunil S More, Gautham S Annappa, Arpan K Maiti

Abstract

As controversy exists about the efficacy of substance P (SP) in treating ulcerative colitis (UC) with no previous study highlighting the impact of SP on mitochondrial dysfunction in this diseased condition, it became logical to perform the present study. C57BL/6 J mice were administered with DSS @ 3.5%/gm body weight for 3 cycles of 5 days each followed by i.v. dose of SP @ 5nmole per kg for consecutive 7 days. Histopathological features were noticed in the affected colon along with colonic mitochondrial dysfunction, alterations in mitochondrial stress variables and enhanced colonic cell death. Interestingly, SP failed to reverse colitic features and proved ineffective in inhibiting mitochondrial dysfunction. Unexpectedly SP alone seemed to impart detrimental effects on some of the mitochondrial functions, enhanced lipid peroxidation and increased staining intensities for caspases 3 and 9 in the normal colon. To substantiate in vivo findings and to assess free radical scavenging property of SP, Caco-2 cells were exposed to DSS with or without SP in the presence and absence of specific free radical scavengers and antioxidants. Interestingly, in vitro treatment with SP failed to restore mitochondrial functions and its efficacy proved below par compared to SOD and DMSO indicating involvement of O2 •- and •OH in the progression of UC. Besides, catalase, L-NAME and MEG proved ineffective indicating non-involvement of H2O2, NO and ONOO- in UC. Thus, SP may not be a potent anti-colitogenic agent targeting colonic mitochondrial dysfunction for maintenance of colon epithelial tract as it lacks free radical scavenging property.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。