KLF4 alleviates cerebral vascular injury by ameliorating vascular endothelial inflammation and regulating tight junction protein expression following ischemic stroke

KLF4 通过改善血管内皮炎症和调节缺血性中风后的紧密连接蛋白表达来减轻脑血管损伤

阅读:5
作者:Xinyu Zhang, Lu Wang, Zhenxiang Han, Jing Dong, Defang Pang, Yuan Fu, Longxuan Li

Background

Although inflammatory cell adhesion molecules (CAMs) and anti-inflammation factor Kruppel-like transcription factor (KLF) 4 have all been reported to be induced after cerebral ischemic stroke (CIS), the close temporal and spatial relationship between expressions of CAMs and KLF4 following CIS and whether and how CAMs and KLF-4 contribute to the development of CIS-induced vascular injury are still unclear.

Conclusions

These data indicate that KLF4 confers vascular protection against cerebral ischemic injury, suggesting that circulating CAMs and KLF4 might be used as potential biomarkers for predicting the prognosis of acute ischemic stroke and also providing a new proof of concept and potential targets for future prevention and treatment of CIS.

Methods

Here, we first examined the correlation between serum levels of CAMs/KLF4 and infarct volume in acute CIS patients. Then, we determined the relationship between CAMs and KLF4 in mice after focal cerebral ischemia. Finally, we investigated the mechanism of KLF4 in protecting against oxygen-glucose deprivation-induced brain endothelial cell injury.

Results

Our results demonstrated that patients with moderate to severe CIS had higher serum levels of three CAMs including E-selectin, inter-cellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) but lower levels of KLF4 at 48 h after an acute event as compared to patients with minor CIS. The expression levels of three CAMs as well as KLF4 all correlated well with the infarct volume in all the CIS subjects at that time. Although the expressions of three CAMs and KLF4 were all induced in the ischemic hemisphere following focal cerebral ischemia, the peak timing and distribution patterns of their expression were different: the induction of KLF4 lagged behind that of the CAMs in the ischemic penumbra; furthermore, the dual immunofluorescent studies displayed that high expression of KLF4 was always associated with relatively less cerebral vascular endothelial inflammation response in the ischemic hemisphere and vice versa. Mechanistic analyses revealed that KLF4 alleviated CIS-induced cerebral vascular injury by regulating endothelial expressions of CAMs, nuclear factor-kB, and tight junction proteins. Conclusions: These data indicate that KLF4 confers vascular protection against cerebral ischemic injury, suggesting that circulating CAMs and KLF4 might be used as potential biomarkers for predicting the prognosis of acute ischemic stroke and also providing a new proof of concept and potential targets for future prevention and treatment of CIS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。