Evolutionary genetic algorithm identifies IL2RB as a potential predictive biomarker for immune-checkpoint therapy in colorectal cancer

进化遗传算法确定 IL2RB 是结直肠癌免疫检查点治疗的潜在预测生物标志物

阅读:5
作者:Matthew Alderdice, Stephanie G Craig, Matthew P Humphries, Alan Gilmore, Nicole Johnston, Victoria Bingham, Vicky Coyle, Seedevi Senevirathne, Daniel B Longley, Maurice B Loughrey, Stephen McQuaid, Jacqueline A James, Manuel Salto-Tellez, Mark Lawler, Darragh G McArt

Abstract

Identifying robust predictive biomarkers to stratify colorectal cancer (CRC) patients based on their response to immune-checkpoint therapy is an area of unmet clinical need. Our evolutionary algorithm Atlas Correlation Explorer (ACE) represents a novel approach for mining The Cancer Genome Atlas (TCGA) data for clinically relevant associations. We deployed ACE to identify candidate predictive biomarkers of response to immune-checkpoint therapy in CRC. We interrogated the colon adenocarcinoma (COAD) gene expression data across nine immune-checkpoints (PDL1, PDCD1, CTLA4, LAG3, TIM3, TIGIT, ICOS, IDO1 and BTLA). IL2RB was identified as the most common gene associated with immune-checkpoint genes in CRC. Using human/murine single-cell RNA-seq data, we demonstrated that IL2RB was expressed predominantly in a subset of T-cells associated with increased immune-checkpoint expression (P < 0.0001). Confirmatory IL2RB immunohistochemistry (IHC) analysis in a large MSI-H colon cancer tissue microarray (TMA; n = 115) revealed sensitive, specific staining of a subset of lymphocytes and a strong association with FOXP3+ lymphocytes (P < 0.0001). IL2RB mRNA positively correlated with three previously-published gene signatures of response to immune-checkpoint therapy (P < 0.0001). Our evolutionary algorithm has identified IL2RB to be extensively linked to immune-checkpoints in CRC; its expression should be investigated for clinical utility as a potential predictive biomarker for CRC patients receiving immune-checkpoint blockade.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。