The Prion Protein Regulates Synaptic Transmission by Controlling the Expression of Proteins Key to Synaptic Vesicle Recycling and Exocytosis

朊病毒蛋白通过控制突触囊泡循环和胞吐关键蛋白的表达来调节突触传递

阅读:5
作者:Caterina Peggion, Roberto Stella, Francesco Chemello, Maria Lina Massimino, Giorgio Arrigoni, Stefano Cagnin, Giancarlo Biancotto, Cinzia Franchin, Maria Catia Sorgato, Alessandro Bertoli

Abstract

The cellular prion protein (PrPC), whose misfolded conformers are implicated in prion diseases, localizes to both the presynaptic membrane and postsynaptic density. To explore possible molecular contributions of PrPC to synaptic transmission, we utilized a mass spectrometry approach to quantify the release of glutamate from primary cerebellar granule neurons (CGN) expressing, or deprived of (PrP-KO), PrPC, following a depolarizing stimulus. Under the same conditions, we also tracked recycling of synaptic vesicles (SVs) in the two neuronal populations. We found that in PrP-KO CGN these processes decreased by 40 and 60%, respectively, compared to PrPC-expressing neurons. Unbiased quantitative mass spectrometry was then employed to compare the whole proteome of CGN with the two PrP genotypes. This approach allowed us to assess that, relative to the PrPC-expressing counterpart, the absence of PrPC modified the protein expression profile, including diminution of some components of SV recycling and fusion machinery. Subsequent quantitative RT-PCR closely reproduced proteomic data, indicating that PrPC is committed to ensuring optimal synaptic transmission by regulating genes involved in SV dynamics and neurotransmitter release. These novel molecular and cellular aspects of PrPC add insight into the underlying mechanisms for synaptic dysfunctions occurring in neurodegenerative disorders in which a compromised PrPC is likely to intervene.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。