TIGAR alleviates oxidative stress in brain with extended ischemia via a pentose phosphate pathway-independent manner

TIGAR 通过不依赖戊糖磷酸途径的方式缓解长期缺血脑组织的氧化应激

阅读:6
作者:Mengru Liu, Xinyu Zhou, Yue Li, Shijia Ma, Ling Pan, Xingxian Zhang, Wanqing Zheng, Zhanxun Wu, Ke Wang, Anil Ahsan, Jiaying Wu, Lei Jiang, Yangyang Lu, Weiwei Hu, Zhenghong Qin, Zhong Chen, Xiangnan Zhang

Abstract

TP53-induced glycolysis and apoptosis regulator (TIGAR) alleviates oxidative stress and protects against ischemic neuronal injury by shifting glucose metabolism into the pentose phosphate pathway (PPP). However, the brain alters glucose metabolism from PPP to glycolysis during prolonged ischemia. It is still unknown whether and how TIGAR exerts the antioxidant activity and neuroprotection in prolonged ischemic brains. Here, we determined the significant upregulation of TIGAR that was proportional to the duration of ischemia. However, TIGAR failed to upregulate the NADPH level but still alleviated oxidative stress in neuronal cells with prolonged oxygen glucose-deprivation (OGD). Furthermore, inhibiting PPP activity, either by the expression of mutant TIGAR (which lacks enzymatic activity) or by silencing Glucose 6-phosphate dehydrogenase, still retained antioxidant effects and neuroprotection of TIGAR with prolonged OGD. Intriguingly, TIGAR-induced autophagy alleviated oxidative stress, contributing to neuron survival. Further experiments indicated that TIGAR-induced autophagy neutralized oxidative stress by activating Nrf2, which was cancelled by ML385 or Nrf2 knockdown. Remarkably, either Atg7 deletion or Nrf2 silencing abolished the neuroprotection of TIGAR in mice with prolonged ischemia. Taken together, we found a PPP-independent pathway in which TIGAR alleviates oxidative stress. TIGAR induces autophagy and, thus, activates Nrf2, offering sustainable antioxidant defense in brains with extended ischemia. This previously unexplored mechanism of TIGAR may serve as a critical compensation for antioxidant activity caused by the lack of glucose in ischemic stroke.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。