Initial autophagic protection switches to disruption of autophagic flux by lysosomal instability during cadmium stress accrual in renal NRK-52E cells

在肾脏 NRK-52E 细胞中,镉应激累积期间,初始自噬保护转变为溶酶体不稳定性破坏自噬通量

阅读:5
作者:W-K Lee, S Probst, M P Santoyo-Sánchez, W Al-Hamdani, I Diebels, J-K von Sivers, E Kerek, E J Prenner, F Thévenod

Abstract

The renal proximal tubule (PT) is the major target of cadmium (Cd2+) toxicity where Cd2+ causes stress and apoptosis. Autophagy is induced by cell stress, e.g., endoplasmic reticulum (ER) stress, and may contribute to cell survival or death. The role of autophagy in Cd2+-induced nephrotoxicity remains unsettled due to contradictory results and lack of evidence for autophagic machinery damage by Cd2+. Cd2+-induced autophagy in rat kidney PT cell line NRK-52E and its role in cell death was investigated. Increased LC3-II and decreased p62 as autophagy markers indicate rapid induction of autophagic flux by Cd2+ (5-10 µM) after 1 h, accompanied by ER stress (increased p-PERK, p-eIF2α, CHOP). Cd2+ exposure exceeding 3 h results in p62/LC3-II accumulation, but diminished effect of lysosomal inhibitors (bafilomycin A1, pepstatin A +E-64d) on p62/LC3-II levels, indicating decreased autophagic flux and cargo degradation. At 24 h exposure, Cd2+ (5-25 µM) activates intrinsic apoptotic pathways (Bax/Bcl-2, PARP-1), which is not evident earlier (≤6 h) although cell viability by MTT assay is decreased. Autophagy inducer rapamycin (100 nM) does not overcome autophagy inhibition or Cd2+-induced cell viability loss. The autophagosome-lysosome fusion inhibitor liensinine (5 μM) increases CHOP and Bax/Bcl-2-dependent apoptosis by low Cd2+ stress, but not by high Cd2+. Lysosomal instability by Cd2+ (5 μM; 6 h) is indicated by increases in cellular sphingomyelin and membrane fluidity and decreases in cathepsins and LAMP1. The data suggest dual and temporal impact of Cd2+ on autophagy: Low Cd2+ stress rapidly activates autophagy counteracting damage but Cd2+ stress accrual disrupts autophagic flux and lysosomal stability, possibly resulting in lysosomal cell death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。