ImmunoCluster provides a computational framework for the nonspecialist to profile high-dimensional cytometry data

ImmunoCluster 为非专业人士提供了一个计算框架来分析高维细胞计数数据

阅读:5
作者:James W Opzoomer #, Jessica A Timms #, Kevin Blighe #, Thanos P Mourikis, Nicolas Chapuis, Richard Bekoe, Sedigeh Kareemaghay, Paola Nocerino, Benedetta Apollonio, Alan G Ramsay, Mahvash Tavassoli, Claire Harrison, Francesca Ciccarelli, Peter Parker, Michaela Fontenay, Paul R Barber, James N Arnold 

Abstract

High-dimensional cytometry is an innovative tool for immune monitoring in health and disease, and it has provided novel insight into the underlying biology as well as biomarkers for a variety of diseases. However, the analysis of large multiparametric datasets usually requires specialist computational knowledge. Here, we describe ImmunoCluster (https://github.com/kordastilab/ImmunoCluster), an R package for immune profiling cellular heterogeneity in high-dimensional liquid and imaging mass cytometry, and flow cytometry data, designed to facilitate computational analysis by a nonspecialist. The analysis framework implemented within ImmunoCluster is readily scalable to millions of cells and provides a variety of visualization and analytical approaches, as well as a rich array of plotting tools that can be tailored to users' needs. The protocol consists of three core computational stages: (1) data import and quality control; (2) dimensionality reduction and unsupervised clustering; and (3) annotation and differential testing, all contained within an R-based open-source framework.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。