Steen solution protects pulmonary microvascular endothelial cells and preserves endothelial barrier after lipopolysaccharide-induced injury

斯蒂恩溶液保护肺微血管内皮细胞并在脂多糖诱导损伤后维护内皮屏障

阅读:6
作者:Huy Q Ta, Nicholas R Teman, Irving L Kron, Mark E Roeser, Victor E Laubach

Conclusions

Steen solution preserves pulmonary endothelial barrier function after lipopolysaccharide exposure by promoting an anti-inflammatory environment via attenuation of oxidative stress, toll-like receptor 4-mediated signaling, and conservation of interendothelial junctions. These protective mechanisms offer insight into the advancement of methods for in vivo lung perfusion with Steen for the treatment of severe acute respiratory distress syndrome.

Methods

Primary pulmonary microvascular endothelial cells were exposed to lipopolysaccharide for 4 hours and then recovered for 8 hours in complete media (Media), Steen, or Steen followed by complete media (Steen/Media). Oxidative stress, chemokines, permeability, interendothelial junction proteins, and toll-like receptor 4-mediated pathways were assessed in pulmonary microvascular endothelial cells using standard methods.

Results

Lipopolysaccharide treatment of pulmonary microvascular endothelial cells and recovery in Media significantly induced reactive oxygen species, lipid peroxidation, expression of chemokines (eg, chemokine [C-X-C motif] ligand 1 and C-C motif chemokine ligand 2) and cell adhesion molecules (P-selectin, E-selectin, and vascular cell adhesion molecule 1), permeability, neutrophil transmigration, p38 mitogen-activated protein kinase and nuclear factor kappa B signaling, and decreased expression of tight and adherens junction proteins (zonula occludens-1, zonula occludens-2, and vascular endothelial-cadherin). All of these inflammatory pathways were significantly attenuated after recovery of pulmonary microvascular endothelial cells in Steen or Steen/Media. Conclusions: Steen solution preserves pulmonary endothelial barrier function after lipopolysaccharide exposure by promoting an anti-inflammatory environment via attenuation of oxidative stress, toll-like receptor 4-mediated signaling, and conservation of interendothelial junctions. These protective mechanisms offer insight into the advancement of methods for in vivo lung perfusion with Steen for the treatment of severe acute respiratory distress syndrome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。