NF-κB activation-induced anti-apoptosis renders HER2-positive cells drug resistant and accelerates tumor growth

NF-κB活化诱导的抗凋亡使HER2阳性细胞产生耐药性并加速肿瘤生长

阅读:8
作者:Shannon T Bailey #, Penelope L Miron #, Yoon J Choi #, Bose Kochupurakkal, Gautam Maulik, Scott J Rodig, Ruiyang Tian, Kathleen M Foley, Teresa Bowman, Alexander Miron, Myles Brown, J Dirk Iglehart #, K Biswas Debajit #

Abstract

Breast cancers with HER2 overexpression are sensitive to drugs targeting the receptor or its kinase activity. HER2-targeting drugs are initially effective against HER2-positive breast cancer, but resistance inevitably occurs. We previously found that NF-κB is hyperactivated in a subset of HER2-positive breast cancer cells and tissue specimens. In this study, we report that constitutively active NF-κB rendered HER2-positive cancer cells resistant to anti-HER2 drugs and cells selected for lapatinib resistance upregulated NF-κB. In both circumstances, cells were antiapoptotic and grew rapidly as xenografts. Lapatinib-resistant cells were refractory to HER2 and NF-κB inhibitors alone but were sensitive to their combination, suggesting a novel therapeutic strategy. A subset of NF-κB-responsive genes was overexpressed in HER2-positive and triple-negative breast cancers, and patients with this NF-κB signature had poor clinical outcome. Anti-HER2 drug resistance may be a consequence of NF-κB activation, and selection for resistance results in NF-κB activation, suggesting that this transcription factor is central to oncogenesis and drug resistance. Clinically, the combined targeting of HER2 and NF-κB suggests a potential treatment paradigm for patients who relapse after anti-HER2 therapy. Patients with these cancers may be treated by simultaneously suppressing HER2 signaling and NF-κB activation. Implications: The combination of an inhibitor of IκB kinase (IKK) inhibitor and anti-HER2 drugs may be a novel treatment strategy for drug-resistant human breast cancers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。