Knockdown of Sucla2 decreases the viability of mouse spermatocytes by inducing apoptosis through injury of the mitochondrial function of cells

Sucla2 的敲低会通过损伤细胞的线粒体功能诱导细胞凋亡,从而降低小鼠精母细胞的活力

阅读:9
作者:Shaoping Huang, Jing Wang, Lei Wang

Conclusions

Sucla2 is related to the developmental stages of mouse spermatogenesis. Knockdown of Sucla2 decreases the viability of mouse spermatocytes by inducing apoptosis via decreased mitochondrial function of the cells

Material and methods

The localization of Sucla2 in the mouse testis was explored through immunohistochemistry (IHC). Sucla2 was knocked down in GC2 cells and its expression was detected by Western blot (WB) to verify the efficiency of the siRNA transfection. Mitochondrial membrane potential (MMP), apoptosis and ROS of GC2 were detected by flow cytometry. ATP production was measured by the luminometric method and the presence of Bcl2 of GC2 was detected by WB.

Methods

The localization of Sucla2 in the mouse testis was explored through immunohistochemistry (IHC). Sucla2 was knocked down in GC2 cells and its expression was detected by Western blot (WB) to verify the efficiency of the siRNA transfection. Mitochondrial membrane potential (MMP), apoptosis and ROS of GC2 were detected by flow cytometry. ATP production was measured by the luminometric method and the presence of Bcl2 of GC2 was detected by WB.

Results

Sucla2 is highly expressed in all germ cells but not in interstitial cells. Coarse Sucla2 signals are found in spermatocytes in stages VII–XII of mouse spermatogenesis. In GC2 cells, knockdown of Sucla2 decreased cell viability and MMP, induced apoptosis of GC2 cells, decreased ATP production, and Bcl2 expression, and increased ROS levels. Conclusions: Sucla2 is related to the developmental stages of mouse spermatogenesis. Knockdown of Sucla2 decreases the viability of mouse spermatocytes by inducing apoptosis via decreased mitochondrial function of the cells

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。