KIF1C mutations in two families with hereditary spastic paraparesis and cerebellar dysfunction

两个患有遗传性痉挛性截瘫和小脑功能障碍的家族中的 KIF1C 突变

阅读:7
作者:Talya Dor, Yuval Cinnamon, Laure Raymond, Avraham Shaag, Naima Bouslam, Ahmed Bouhouche, Marion Gaussen, Vincent Meyer, Alexandra Durr, Alexis Brice, Ali Benomar, Giovanni Stevanin, Markus Schuelke, Simon Edvardson

Background

Hereditary spastic paraparesis (HSP) (syn. Hereditary spastic paraplegia, SPG) are a group of genetic disorders characterised by spasticity of the lower limbs due to pyramidal tract dysfunction. Nearly 60 disease loci have been identified, which include mutations in two genes (KIF5A and KIF1A) that encode motor proteins of the kinesin superfamily. Here we report a novel genetic defect in KIF1C of patients with spastic paraparesis and cerebellar dysfunction in two consanguineous families of Palestinian and Moroccan ancestry.

Conclusions

Kinesin genes encode a family of cargo/motor proteins and are known to cause HSP if mutated. Here we identified nonsense and missense mutations in a further member of this protein family. The KIF1C mutation is associated with a HSP subtype (SPAX2/SAX2) that combines spastic paraplegia and weakness with cerebellar dysfunction.

Results

We performed autozygosity mapping in a Palestinian and classic linkage analysis in a Moroccan family and found a locus on chromosome 17 that had previously been associated with spastic ataxia type 2 (SPAX2, OMIM %611302). Whole-exome sequencing revealed two homozygous mutations in KIF1C that were absent among controls: a nonsense mutation (c.2191C>T, p.Arg731*) that segregated with the disease phenotype in the Palestinian kindred resulted in the entire absence of KIF1C protein from the patient's fibroblasts, and a missense variant (c.505C>T, p.Arg169Trp) affecting a conserved amino acid of the motor domain that was found in the Moroccan kindred. Conclusions: Kinesin genes encode a family of cargo/motor proteins and are known to cause HSP if mutated. Here we identified nonsense and missense mutations in a further member of this protein family. The KIF1C mutation is associated with a HSP subtype (SPAX2/SAX2) that combines spastic paraplegia and weakness with cerebellar dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。