Damping excessive viral-induced IFN-γ rescues the impaired anti-Aspergillus host immune response in influenza-associated pulmonary aspergillosis

抑制过量病毒诱导的 IFN-γ 可挽救流感相关肺曲霉病中受损的抗曲霉菌宿主免疫反应

阅读:5
作者:Laura Seldeslachts, Frederik Staels, Marina Gkountzinopoulou, Cato Jacobs, Birger Tielemans, Eliane Vanhoffelen, Agustin Reséndiz-Sharpe, Lander De Herdt, Jeason Haughton, Teresa Prezzemolo, Oliver Burton, Simon Feys, Frank L van de Veerdonk, Agostinho Carvalho, Lieve Naesens, Patrick Matthys, Katri

Background

Influenza-associated pulmonary aspergillosis (IAPA) is a severe fungal superinfection in critically ill influenza patients that is of incompletely understood pathogenesis. Despite the use of contemporary therapies with antifungal and antivirals, mortality rates remain unacceptably high. We aimed to unravel the IAPA immunopathogenesis as a means to develop adjunctive immunomodulatory therapies.

Methods

We used a murine model of IAPA to investigate how influenza predisposes to the development of invasive pulmonary aspergillosis. Immunocompetent mice were challenged with an intranasal instillation of influenza on day 0 followed by an orotracheal inoculation with Aspergillus 4 days later. Mice were monitored daily for overall health status, lung pathology with micro-computed tomography (μCT) and fungal burden with bioluminescence imaging (BLI). At endpoint, high parameter immunophenotyping, spatial transcriptomics, histopathology, dynamic phagosome biogenesis assays with live imaging, immunofluorescence staining, specialized functional phagocytosis and killing assays were performed. Findings: We uncovered an early exuberant influenza-induced interferon-gamma (IFN-γ) production as the major driver of immunopathology in IAPA and delineated the molecular mechanisms. Specifically, excessive IFN-γ production resulted in a defective Th17-immune response, depletion of macrophages, and impaired killing of Aspergillus conidia by macrophages due to the inhibition of NADPH oxidase-dependent activation of LC3-associated phagocytosis (LAP). Markedly, mice with partial or complete genetic ablation of IFN-γ had a restored Th17-immune response, LAP-dependent mechanism of killing and were fully protected from invasive fungal infection. Interpretation: Together, these

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。