DDX17 Specifically, and Independently of DDX5, Controls Use of the HIV A4/5 Splice Acceptor Cluster and Is Essential for Efficient Replication of HIV

DDX17 独立于 DDX5,具体控制 HIV A4/5 剪接受体簇的使用,对 HIV 的有效复制至关重要

阅读:4
作者:Nyaradzai Sithole, Claire A Williams, Aisling M Vaughan, Julia C Kenyon, Andrew M L Lever

Abstract

HIV splicing involves five splice donor and eight splice acceptor sequences which, together with cryptic splice sites, generate over 100 mRNA species. Ninety percent of both partially spliced and fully spliced transcripts utilize the intrinsically weak A4/A5 3' splice site cluster. We show that DDX17, but not its close paralog DDX5, specifically controls the usage of this splice acceptor group. In its absence, production of the viral envelope protein and other regulatory and accessory proteins is grossly reduced, while Vif, which uses the A1 splice acceptor, is unaffected. This is associated with a profound decrease in viral export from the cell. Loss of Vpu expression causing upregulation of cellular Tetherin compounds the phenotype. DDX17 utilizes distinct RNA binding motifs for its role in efficient HIV replication, and we identify RNA binding motifs essential for its role, while the Walker A, Walker B (DEAD), Q motif and the glycine doublet motif are all dispensable. We show that DDX17 interacts with SRSF1/SF2 and the heterodimeric auxiliary factor U2AF65/35, which are essential splicing factors in the generation of Rev and Env/Vpu transcripts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。