Profilin1 Promotes Renal Tubular Epithelial Cell Apoptosis in Diabetic Nephropathy Through the Hedgehog Signaling Pathway

Profilin1通过Hedgehog信号通路促进糖尿病肾病肾小管上皮细胞凋亡

阅读:11
作者:Liping Mai #, Guodong He #, Jing Chen, Jiening Zhu, Shaoxian Chen, Hui Yang, Mengzhen Zhang, Xinghua Hou, Miaola Ke, Xiaohong Li

Background

Profilin-1 (PFN1) regulates the dynamic balance of actin and plays an important role in cell functions as a hub protein in signaling molecule interaction networks. Dysregulation of PFN1 is related to pathologic kidney diseases. Diabetic nephropathy (DN) was recently reported as an inflammatory disorder, however, the molecular mechanisms of PFN1 in DN remain unclear. Therefore, the present study was conducted to explore the molecular and bioinformatic characteristics of PFN1 in DN.

Conclusion

PFN1 might play an integral role in the regulation of cell proliferation and apoptosis during DN development by activating the Hedgehog signaling pathway. This study provided molecular and bioinformatic characterizations of PFN1, and contributed to the understanding of the molecular mechanisms leading to DN.

Methods

Bioinformatics analyses were performed on the chip of database in DN kidney tissues. A cellular model of DN was established in human renal tubular epithelial cells (HK-2) induced by high glucose. The PFN1 gene was overexpressed or knocked-down to investigate its function in DN. Flow cytometry was used to detect cell proliferation and apoptosis. PFN1 and proteins in the related signaling pathways were evaluated by Western blotting.

Results

The expression of PFN1 was significantly increased in DN kidney tissues (P < 0.001) and was correlated with a high apoptosis-associated score (Pearson's correlation = 0.664) and cellular senescence-associated score (Pearson's correlation = 0.703). PFN1 protein was mainly located in cytoplasm. Overexpression of PFN1 promoted apoptosis and blocked the proliferation of HK-2 cells treated with high levels of glucose. Knockdown of PFN1 led to the opposite effects. Additionally, we found that PFN1 was correlated with the inactivation of the Hedgehog signaling pathway in HK-2 cells treated with high levels of glucose.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。