Auditory synaptopathy in mice lacking the glutamate transporter GLAST and its impact on brain activity

缺乏谷氨酸转运蛋白 GLAST 的小鼠的听觉突触病变及其对大脑活动的影响

阅读:6
作者:Evangelia Tserga, Peter Damberg, Barbara Canlon, Christopher R Cederroth

Abstract

Neurotransmission of acoustic signals from the hair cells to the auditory nerve relies on a tightly controlled communication between pre-synaptic ribbons and post-synaptic glutamatergic terminals. After noise overexposure, de-afferentation occurs as a consequence of excessive glutamate release. What maintains synaptic integrity in the cochlea is poorly understood. The objective of this study is to evaluate the role of GLAST in maintaining synaptic integrity in the cochlea in absence or presence of noise, and its impact on sound-evoked brain activity using manganese-enhanced MRI (MeMRI). The glutamate aspartate transporter GLAST is present in supporting cells near the afferent synapse and its genetic deletion leads to greater synaptic swelling after noise overexposure. At baseline, GLAST knockout (GLAST KO) mice displayed two-fold lower wave 1 amplitude of the auditory brainstem response (ABR) when compared to their wild-type littermates in spite of similar ABR and distortion product otoacoustic emissions (DPOAE) thresholds. While the abundance of ribbons was not affected by the loss of GLAST function, the number of paired synapses was halved in GLAST KO mice, suggestive of a pre-existing auditory synaptopathy. Immediately after the noise exposure ABR thresholds rose by 41-62dB to a similar degree in GLAST WT and KO mice and DPOAE remained unaffected. In the acute phase following noise exposure, GLAST KO mice showed near complete de-afferentation unlike WT mice which maintained four to seven paired synapses per IHC. Brain activity using MeMRI found noise exposure to cause greater activity in the inferior colliculus in GLAST KO but not in WT mice. No changes in brain activity was found in GLAST KO mice at baseline in spite of affected afferent synapses, suggesting that auditory synaptopathy may not be sufficient to alter brain activity in the absence of noise exposure.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。