Microtubule binding protein PACRG plays a role in regulating specific ciliary dyneins during microtubule sliding

微管结合蛋白 PACRG 在微管滑动过程中调节特定纤毛动力蛋白

阅读:7
作者:Katsutoshi Mizuno, Erin E Dymek, Elizabeth F Smith

Abstract

The complex waveforms characteristic of motile eukaryotic cilia and flagella are produced by the temporally and spatially regulated action of multiple dynein subforms generating sliding between subsets of axonemal microtubules. Multiple protein complexes have been identified that are associated with the doublet microtubules and that mediate regulatory signals between key axonemal structures, such as the radial spokes and central apparatus, and the dynein arm motors; these complexes include the N-DRC, MIA, and CSC complexes. Previous studies have shown that PACRG (parkin co-regulated gene) forms a complex that is anchored to the axonemal doublet microtubules. Loss of PACRG causes defects in ciliary motility and cilia related diseases. Here, we use an in vitro microtubule sliding assay to demonstrate that PACRG and its interactors are part of a signaling pathway that includes the central apparatus, radial spokes and specific inner dynein arm subforms to control dynein-driven microtubule sliding. Using a biochemical approach, our studies also indicate that PACRG interacts with the radial spokes. © 2016 Wiley Periodicals, Inc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。