Thrombin Aggravates Hypoxia/Reoxygenation Injury of Cardiomyocytes by Activating an Autophagy Pathway-Mediated by SIRT1

凝血酶通过激活SIRT1介导的自噬途径加重心肌细胞缺氧/复氧损伤

阅读:4
作者:Xiaoning Wang, Yunhe Xu, Lingbo Li, Weiwei Lu

Abstract

BACKGROUND Acute myocardial infarction is the leading cause of mortality among adults worldwide. The present study aimed to investigate the role and mechanism of thrombin and SIRT1 in hypoxia/reoxygenation (H/R) injury. MATERIAL AND METHODS H9c2 cardiomyocytes were used to create an H/R model to simulate in vivo ischemia/reperfusion injury. The MTT assay was used to measure cell viability, qRT-PCR was used to detect the level of SIRT1, thrombin, and PAR-1, and western blot analysis was conducted for evaluation of thrombin, PAR-1, SIRT1, LC3I, LC3II, and Beclin1. ELISA was applied for determination of IL-1ß, IL-6, TNF-alpha, MMP-9, and ICAM-1. After the establishment of the H/R model, superoxide dismutase (SOD) activity was evaluated by the xanthine oxidase method, malondialdehyde content was detected by thiobarbituric acid assay, and reactive oxygen species generation was measured by CM-H2DCFDA. RESULTS The findings showed that thrombin enhanced inflammatory factor secretion and oxidative stress but inhibited cell viability in H/R-injured cardiomyocytes. We also observed that thrombin promoted autophagy in H/R-injured cardiomyocytes. In addition, thrombin enhanced the upregulation of SIRT1 expression by H/R. However, it was found that inhibition of SIRT1 could suppress the effect of thrombin on inflammatory factor secretion, oxidative stress, and cell viability. Moreover, downregulation of SIRT1 suppressed the inhibitory effect of thrombin on autophagy in H/R injury. CONCLUSIONS Thrombin aggravates H/R injury of cardiomyocytes by activating an autophagy pathway mediated by SIRT1. These findings might provide a potential target therapy for the treatment of ischemia/reperfusion injury in future clinical work.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。