Engineering a biomimetic bone scaffold that can regulate redox homeostasis and promote osteogenesis to repair large bone defects

设计一种能够调节氧化还原稳态并促进成骨的仿生骨支架来修复大骨缺损

阅读:4
作者:Cam-Hoa Mac, Hao-Yu Chan, Yi-Hsuan Lin, Amit Kumar Sharma, Hsiang-Lin Song, Yi-Sheng Chan, Kun-Ju Lin, Yu-Jung Lin, Hsing-Wen Sung

Abstract

The reconstruction of a large bone defect to an extent that exceeds its self-healing capacity has been a great clinical challenge. In pursuit of this goal, a biomaterial-based scaffold that comprises radially aligned mineralized collagen (RA-MC) fibers that incorporate nanosilicon (RA-MC/nSi), is proposed. The chemical composition of the MC fibers is similar to that of natural bone matrices. The therapeutic efficacy of the RA-MC/nSi scaffold is evaluated in a mouse model with an experimentally created large calvarial defect. In vitro and in vivo results reveal that the RA-MC fibers of the scaffold guide the directional infiltration and migration of reparative cells from the host tissue toward the center of the defect, suggesting a potential application in promoting osteoconductivity. The incorporated nSi renders the scaffold able sustainably to release gaseous hydrogen and water-soluble silicic acid during the healing process. The released hydrogen gas can effectively regulate redox homeostasis and mitigate excessive inflammation, and the silicic acid can promote the proliferation of reparative cells and enhance their osteogenic differentiation, indicative of osteoinductivity. These findings support the use of the as-proposed biomimetic RA-MC/nSi scaffold as a promising bone substitute to enhance the regeneration of large bone defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。