Age‑related brainstem degeneration through microRNA modulation in mice

通过 microRNA 调节小鼠的年龄相关性脑干退化

阅读:10
作者:Rie Kawakita #, Tadayuki Takata #, Wakako Nonaka, Yasuhiro Hamada, Hisakazu Iwama, Hideki Kobara, Kazushi Deguchi, Osamu Miyamoto, Takehiro Nakamura, Toshifumi Itano, Tsutomu Masaki

Abstract

Histopathological changes occur in the brainstem during the early stages of Alzheimer's disease (AD), with the pathological changes of the brain lesions ascending progressively in accordance with the Braak staging system. The senescence‑accelerated mouse prone 8 (SAMP8) mouse model has been previously used as a model of age‑dependent neurodegenerative diseases, including AD. In the present study, microRNAs (miRNAs) that were upregulated or downregulated in SAMP8 brainstems were identified using miRNA profiling of samples obtained from miRNA arrays. The preliminary stage of cognitive dysfunction was examined using male 5‑month‑old SAMP8 mice, with age‑matched senescence‑accelerated mouse resistant 1 mice as controls. A Y‑maze alternation test was performed to assess short‑term working memory and miRNA profiling was performed in each region of the dissected brain (brainstem, hippocampus and cerebral cortex). SAMP8 mice tended to be hyperactive, but short‑term working memory was preserved. Two miRNAs were upregulated (miR‑491‑5p and miR‑764‑5p) and two were downregulated (miR‑30e‑3p and miR‑323‑3p) in SAMP8 brainstems. In SAMP8 mice, the expression level of upregulated miRNAs were the highest in the brainstem, wherein age‑related brain degeneration occurs early. It was demonstrated that the order of specific miRNA expression levels corresponded to the progression order of age‑related brain degeneration. Differentially expressed miRNAs regulate multiple processes, including neuronal cell death and neuron formation. Changes in miRNA expression may result in the induction of target proteins during the early stages of neurodegeneration in the brainstem. These findings suggest that studying altered miRNA expression may provide molecular evidence for early age‑related neuropathological changes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。