Downregulation of fascin induces collective cell migration in triple‑negative breast cancer

肌成束蛋白的下调诱导三阴性乳腺癌细胞集体迁移

阅读:17
作者:Yumiko Yamamoto, Yoshihiro Hayashi, Hideyuki Sakaki, Ichiro Murakami

Abstract

Breast cancer (BC) is one of the most common types of cancer affecting female patients. Triple‑negative BC (TNBC) is an aggressive subtype. Fascin, an actin‑bundling protein, serves a significant role in cancer metastasis. Fascin overexpression is associated with poor prognosis of BC. To confirm the relationship between fascin expression and BC malignancy, the present study reviewed clinical data from 100 Japanese patients with BC and performed fresh immunohistochemical fascin examination of tissue samples. Statistical analyses showed metastasis or recurrence in 11 of 100 patients and a significant association between high fascin expression and poor prognosis. The TNBC subtype was also associated with high fascin expression. However, a few cases developed poor prognosis regardless of negative or slightly positive fascin expression. The present study established fascin knockdown (FKD) MDA‑MB‑231, a TNBC cell line, and investigated morphological effects of fascin on TNBC cells. FKD cells exhibited cell‑cell connections and bulbous nodules of various sizes on the cell surface. Conversely, non‑FKD MDA‑MB‑231 cells exhibited loose cell‑cell connections with numerous filopodia on the cell surface. Filopodia, actin‑rich plasma membrane protrusions, are composed of fascin and control cell‑cell interaction, migration and wound healing. Cancer metastasis is conventionally classified into two mechanisms: single and collective cell migration. Fascin increases cancer metastasis by single cell migration via filopodia on the cell surface. However, the present study suggested that following FKD, TNBC cells lost filopodia and exhibited collective cell migration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。