Identification of functional heterogeneity of immune cells and tubular-immune cellular interplay action in diabetic kidney disease

糖尿病肾病中免疫细胞功能异质性和肾小管-免疫细胞相互作用的鉴定

阅读:15
作者:Yunfeng Bai, Kun Chi, Delong Zhao, Wanjun Shen, Ran Liu, Jing Hao, Guangyan Cai, Xiangmei Chen, Quan Hong

Background

Renal inflammation plays key roles in the pathogenesis of diabetic kidney disease (DKD). Immune cell infiltration is the main pathological feature in the progression of DKD. Sodium glucose cotransporter 2 inhibitor (SGLT2i) were reported to have antiinflammatory effects on DKD. While the heterogeneity and molecular basis of the pathogenesis and treatment with SGLT2i in DKD remains poorly understood.

Conclusions

Our study depicts the heterogeneity of macrophages and clarifies a new possible explanation of dapagliflozin treatment, showing the metabolism shifts toward gluconeogenesis in macrophages, fueling the anti-inflammatory function of M2 macrophages, highlighting the new molecular features and signaling pathways and potential therapeutic targets, which has provided an important reference for the study of immune-related mechanisms in the progression of the disease.

Methods

To address this question, we performed a single-cell transcriptomics data analysis and cell cross-talk analysis based on the database (GSE181382). The single-cell transcriptome analysis findings were validated using multiplex immunostaining.

Results

A total of 58760 cells are categorized into 25 distinct cell types. A subset of macrophages with anti-inflammatory potential was identified. We found that Ccl3+ (S100a8/a9 high) macrophages with anti-inflammatory and antimicrobial in the pathogenesis of DKD decreased and reversed the dapagliflozin treatment. Besides, dapagliflozin treatment enhanced the accumulation of Pck1+ macrophage, characterized by gluconeogenesis signaling pathway. Cell-cross talk analysis showed the GRN/SORT1 pair and CD74 related signaling pathways were enriched in the interactions between tubular epithelial cells and immune cells. Conclusions: Our study depicts the heterogeneity of macrophages and clarifies a new possible explanation of dapagliflozin treatment, showing the metabolism shifts toward gluconeogenesis in macrophages, fueling the anti-inflammatory function of M2 macrophages, highlighting the new molecular features and signaling pathways and potential therapeutic targets, which has provided an important reference for the study of immune-related mechanisms in the progression of the disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。