Autophagy induces transforming growth factor-β-dependent epithelial-mesenchymal transition in hepatocarcinoma cells through cAMP response element binding signalling

自噬通过 cAMP 反应元件结合信号诱导肝癌细胞转化生长因子 β 依赖性上皮间质转化

阅读:7
作者:Shaobo Hu, Liyu Wang, Xi Zhang, Yongzhong Wu, Jing Yang, Jun Li

Abstract

Autophagy promotes invasion of hepatocarcinoma cells through transforming growth factor (TGF)-β-dependent epithelial-mesenchymal transition (EMT). This study investigated the mechanism by which autophagy induces TGF-β-triggered EMT and invasion of hepatocarcinoma cells. Autophagy was induced in HepG2 and BEL7402 cells by starvation in Hank's balanced salt solution. Induction of autophagy degraded phosphodiesterase (PDE) 4A and increased intracellular cAMP, PKA activity and PKA phosphorylation, resulting in increased cAMP response element binding (CREB) phosphorylation in hepatocarcinoma cells. Autophagy-induced activation of cAMP/PKA/CREB signalling further enhanced TGF-β1 expression, downregulated the expression of epithelial markers and upregulated the expression of mesenchymal markers, accelerating invasion of hepatocarcinoma cells. Inhibition of autophagy by Atg3 and Atg7 knockdown or by chloroquine treatment prevented degradation of PDE4A and activation of cAMP/PKA/CREB signalling, suppressing TGF-β1 expression, EMT and invasion in hepatocarcinoma cells. In addition, inhibition of cAMP/PKA/CREB signalling also blocked autophagy-induced TGF-β1 expression and prevented EMT and invasion of hepatocarcinoma cells under starvation. Furthermore, exogenous inhibition of PDE4A or activation of cAMP/PKA/CREB signalling rescued TGF-β1 expression, EMT and invasion in autophagy-deficient hepatocarcinoma cells. These findings suggest that autophagy induces TGF-β1 expression and EMT in hepatocarcinoma cells via cAMP/PKA/CREB signalling, which is activated by autophagy-dependent PDE4A degradation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。