Involvement of BMP-15 in glucocorticoid actions on ovarian steroidogenesis by rat granulosa cells

BMP-15 参与大鼠颗粒细胞卵巢类固醇生成的糖皮质激素作用

阅读:9
作者:Chiaki Kashino, Toru Hasegawa, Yasuhiro Nakano, Nahoko Iwata, Koichiro Yamamoto, Yasuhiko Kamada, Hisashi Masuyama, Fumio Otsuka

Abstract

To elucidate the impact of glucocorticoids on ovarian steroidogenesis and its molecular mechanism by focusing on bone morphogenetic proteins (BMPs), we examined the effect of dexamethasone (Dex) on estradiol and progesterone synthesis by using primary culture of rat granulosa cells. It was revealed that Dex treatment dose-dependently decreased estradiol production but increased progesterone production induced by follicle-stimulating hormone (FSH) by granulosa cells. In accordance with the effects of Dex on estradiol synthesis, Dex suppressed P450arom mRNA expression and cAMP synthesis induced by FSH. Dex treatment in turn enhanced basal as well as FSH-induced levels of mRNAs encoding the enzymes for progesterone synthesis including P450scc and 3βHSD but not StAR and 20αHSD. Of note, Dex treatment significantly upregulated transcription of the BMP target gene Id-1 and Smad1/5/9 phosphorylation in the presence of BMP-15 among the key ovarian BMP ligands. It was also found that Dex treatment increased the expression level of BMP type-I receptor ALK-6 among the type-I and -II receptors for BMP-15. Inhibitory Smad6/7 expression was not affected by Dex treatment. On the other hand, BMP-15 treatment upregulated glucocorticoid receptor (GR) expression in granulosa cells. Collectively, it was revealed that glucocorticoids elicit differential effects on ovarian steroidogenesis, in which GR and BMP-15 actions are mutually enhanced in granulosa cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。