Inhibition of MicroRNA-96 Ameliorates Cognitive Impairment and Inactivation Autophagy Following Chronic Cerebral Hypoperfusion in the Rat

抑制 MicroRNA-96 可改善大鼠慢性脑灌注不足引起的认知障碍和自噬失活

阅读:7
作者:Peifang Liu, Peijia Liu, Zhiyong Wang, Shaohong Fang, Yuting Liu, Jinhua Wang, Wenjuan Liu, Ning Wang, Lixia Chen, Jianjian Wang, Huixue Zhang, Lihua Wang

Aims

Chronic cerebral hypoperfusion (CCH) is a high-risk factor for vascular dementia and Alzheimer's disease. Autophagy plays a critical role in the initiation and progression of CCH. However, the underlying mechanisms remain unclear. In this study, we identified the effect of a microRNA (miR) on autophagy under CCH.

Background/aims

Chronic cerebral hypoperfusion (CCH) is a high-risk factor for vascular dementia and Alzheimer's disease. Autophagy plays a critical role in the initiation and progression of CCH. However, the underlying mechanisms remain unclear. In this study, we identified the effect of a microRNA (miR) on autophagy under CCH.

Conclusion

Our study demonstrated that miR-96 may play a key role in autophagy under CCH by regulating mTOR; therefore, miR-96 may represent a potential therapeutic target for CCH.

Methods

A CCH rat model was established by two-vessel occlusion (2VO). Learning and memory abilities were assessed by the Morris water maze. The protein levels of LC3, beclin-1, and mTOR were detected by western blotting and immunofluorescence assays, miR-96 expression was assessed by real-time PCR, luciferase assays were used to determine the effect of miR-96 on the 3' untranslated region (UTR) of mTOR, and the number of autophagosomes was examined by electron microscopy.

Results

The level of miR-96 was significantly increased in 2VO rats, and inhibition of miR-96 ameliorated the cognitive impairment induced by 2VO. Furthermore, the number of LC3- and beclin-1-positive autophagosomes was increased in 2VO rats, and was decreased after miR-96 antagomir injection. However, the protein level of mTOR was reduced in 2VO rats, and it was down-regulated by miR-96 overexpression and up-regulated by miR-96 inhibition in 2VO rats and primary culture cells. Moreover, the luciferase activity of the 3'-UTR of mTOR was suppressed by miR-96, which was relieved by mutation of the miR-96 binding sites.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。