Antibody engineering improves neutralization activity against K417 spike mutant SARS-CoV-2 variants

抗体工程提高了对 K417 刺突突变 SARS-CoV-2 变体的中和活性

阅读:6
作者:Lili Li #, Meiling Gao, Peng Jiao, Shulong Zu, Yong-Qiang Deng, Dingyi Wan, Yang Cao, Jing Duan, Saba R Aliyari, Jie Li, Yueyue Shi, Zihe Rao, Cheng-Feng Qin, Yu Guo, Genhong Cheng, Heng Yang

Background

Neutralizing antibodies are approved drugs to treat coronavirus disease-2019 (COVID-19) patients, yet mutations in severe acute respiratory syndrome coronavirus (SARS-CoV-2) variants may reduce the antibody neutralizing activity. New monoclonal antibodies (mAbs) and antibody remolding strategies are recalled in the battle with COVID-19 epidemic.

Conclusion

Our studies have outlined a strategy to identify and engineer neutralizing antibodies against SARS-CoV-2 variants.

Results

We identified multiple mAbs from antibody phage display library made from COVID-19 patients and further characterized the R3P1-E4 clone, which effectively suppressed SARS-CoV-2 infection and rescued the lethal phenotype in mice infected with SARS-CoV-2. Crystal structural analysis not only explained why R3P1-E4 had selectively reduced binding and neutralizing activity to SARS-CoV-2 variants carrying K417 mutations, but also allowed us to engineer mutant antibodies with improved neutralizing activity against these variants. Thus, we screened out R3P1-E4 mAb which inhibits SARS-CoV-2 and related mutations in vitro and in vivo. Antibody engineering improved neutralizing activity of R3P1-E4 against K417 mutations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。