Regulation of PKR-dependent RNA translation inhibition by TRIM21 upon virus infection or other stress

TRIM21 在病毒感染或其他应激时对 PKR 依赖的 RNA 翻译抑制的调节

阅读:8
作者:Huiyi Li, Shun Liu, Qing Feng, Rilin Deng, Jingjing Wang, Xintao Wang, Renyun Tian, Yan Xu, Shengwen Chen, Qian Liu, Luoling Wang, Xinran Li, Mengyu Wan, Yousong Peng, Songqing Tang, Binbin Xue, Haizhen Zhu

Abstract

The host always employs various ways to defend against viral infection and spread. However, viruses have evolved their own effective strategies, such as inhibition of RNA translation of the antiviral effectors, to destroy the host's defense barriers. Protein synthesis, commonly controlled by the α-subunit of eukaryotic translation initiation factor 2 (eIF2α), is a basic cellular biological process among all species. In response to viral infection, in addition to inducing the transcription of antiviral cytokines by innate immunity, infected cells also inhibit the RNA translation of antiviral factors by activating the protein kinase R (PKR)-eIF2α signaling pathway. Regulation of innate immunity has been well studied; however, regulation of the PKR-eIF2α signaling pathway remains unclear. In this study, we found that the E3 ligase TRIM21 negatively regulates the PKR-eIF2α signaling pathway. Mechanistically, TRIM21 interacts with the PKR phosphatase PP1α and promotes K6-linked polyubiquitination of PP1α. Ubiquitinated PP1α augments its interaction with PKR, causing PKR dephosphorylation and subsequent translational inhibition release. Furthermore, TRIM21 can constitutively restrict viral infection by reversing PKR-dependent translational inhibition of various previously known and unknown antiviral factors. Our study highlights a previously undiscovered role of TRIM21 in regulating translation, which will provide new insights into the host antiviral response and novel targets for the treatment of translation-associated diseases in the clinic.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。