Impact of perfusion on neuronal development in human derived neuronal networks

灌注对人类神经元网络中神经元发育的影响

阅读:7
作者:Donatella Di Lisa, Andrea Andolfi, Giacomo Masi, Giuseppe Uras, Pier Francesco Ferrari, Sergio Martinoia, Laura Pastorino

Abstract

Advanced in vitro models of the brain have evolved in recent years from traditional two-dimensional (2D) ones, based on rodent derived cells, to three-dimensional (3D) ones, based on human neurons derived from induced pluripotent stem cells. To address the dynamic changes of the tissue microenvironment, bioreactors are used to control the in vitro microenvironment for viability, repeatability, and standardization. However, in neuronal tissue engineering, bioreactors have primarily been used for cell expansion purposes, while microfluidic systems have mainly been employed for culturing organoids. In this study, we explored the use of a commercial perfusion bioreactor to control the culture microenvironment of neuronal cells in both 2D and 3D cultures. Namely, neurons differentiated from human induced pluripotent stem cells (iNeurons) were cultured in 2D under different constant flow rates for 72 h. The impact of different flow rates on early-stage neuronal development and synaptogenesis was assessed by morphometric characterization and synaptic analysis. Based on these results, two involving variable flow rates were developed and applied again in 2D culture. The most effective protocol, in terms of positive impact on neuronal development, was then used for a preliminary study on the application of dynamic culturing conditions to neuronal cells in 3D. To this purpose, both iNeurons, co-cultured with astrocytes, and the human neuroblastoma cells SH-SY5Y were embedded into a hydrogel and maintained under perfusion for up to 28 days. A qualitative evaluation by immunocytochemistry and confocal microscopy was carried out to assess cell morphology and the formation of a 3D neuronal network.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。