Epithelial-mesenchymal transition induction is associated with augmented glucose uptake and lactate production in pancreatic ductal adenocarcinoma

上皮-间质转化诱导与胰腺导管腺癌中葡萄糖摄取和乳酸生成增加有关

阅读:12
作者:Menghan Liu, Lake-Ee Quek, Ghazal Sultani, Nigel Turner

Background

Pancreatic ductal adenocarcinoma (PDAC) is a common malignancy with dismal prognosis. Metastatic spread and therapeutic resistance, the main causes of PDAC-related mortalities, are both partially underlined by the epithelial-mesenchymal transition (EMT) of PDAC cells. While the role of Warburg metabolism has been recognized in supporting rapid cellular growth and proliferation in many cancer types, less is known about the metabolic changes occurring during EMT, particularly in the context of PDAC.

Conclusions

Our results characterize the metabolic reprogramming occurring during PDAC cell EMT and highlight the common changes of increased glucose uptake and lactate secretion under different EMT conditions. Such insight is urgently required for designing metabolic strategies to selectively target cells undergoing EMT in PDAC.

Results

In the current study, experimental models of EMT were established in the Panc-1 cell line of human PDAC via exposure to two physiologically relevant EMT inducers (tumor necrosis factor-α and transforming growth factor-β) and the metabolic consequences examined. The two EMT models displayed similar alterations in the general metabolic profile including augmented glucose uptake and lactate secretion as well as the lack of change in oxidative metabolism. Examination of molecular markers revealed differences in the pathways underlying the metabolic rewiring. 13C-Glucose tracer data confirmed that a major portion of accumulated lactate was derived from glucose, but subsequent flux analysis suggested involvement of non-canonical pathways towards lactate production. Conclusions: Our results characterize the metabolic reprogramming occurring during PDAC cell EMT and highlight the common changes of increased glucose uptake and lactate secretion under different EMT conditions. Such insight is urgently required for designing metabolic strategies to selectively target cells undergoing EMT in PDAC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。