PARP inhibitors enhance antitumor immune responses by triggering pyroptosis via TNF-caspase 8-GSDMD/E axis in ovarian cancer

PARP抑制剂通过TNF-caspase 8-GSDMD/E轴触发细胞焦亡,从而增强卵巢癌的抗肿瘤免疫反应。

阅读:1
作者:Yu Xia # ,Pu Huang # ,Yi-Yu Qian # ,Zanhong Wang # ,Ning Jin ,Xin Li ,Wen Pan ,Si-Yuan Wang ,Ping Jin ,Emmanuel Kwateng Drokow ,Xiong Li ,Qi Zhang ,Zhengmao Zhang ,Pingfei Li ,Yong Fang ,Xiang-Ping Yang ,Zhiqiang Han ,Qing-Lei Gao

Abstract

Background: In addition to their established action of synthetic lethality in tumor cells, poly(ADP-ribose) polymerase inhibitors (PARPis) also orchestrate tumor immune microenvironment (TIME) that contributes to suppressing tumor growth. However, it remains not fully understood whether and how PARPis trigger tumor-targeting immune responses. Methods: To decode the immune responses reshaped by PARPis, we conducted T-cell receptor (TCR) sequencing and immunohistochemical (IHC) analyses of paired clinical specimens before and after niraparib monotherapy obtained from a prospective study, as well as ID8 mouse ovarian tumors. To validate the induction of immunogenic cell death (ICD) by PARPis, we performed immunofluorescence/IHC staining with homologous recombination deficiency tumor cells and patient-derived xenograft tumor tissues, respectively. To substantiate that PARPis elicited tumor cell pyroptosis, we undertook comprehensive assessments of the cellular morphological features, cleavage of gasdermin (GSDM) proteins, and activation of TNF-caspase signaling pathways through genetic downregulation/depletion and selective inhibition. We also evaluated the critical role of pyroptosis in tumor suppression and immune activation following niraparib treatment using a syngeneic mouse model with implanting CRISPR/Cas9 edited Gsdme-/ - ID8 tumor cells into C57BL/6 mice. Results: Our findings revealed that PARPis augmented the proportion of neoantigen-recognized TCR clones and TCR clonal expansion, and induced an inflamed TIME characterized by increased infiltration of both innate and adaptive immune cells. This PARPis-strengthened immune response was associated with the induction of ICD, specifically identified as pyroptosis, which possessed distinctive morphological features and GSDMD/E cleavage. It was validated that the cleavage of GSDMD/E was due to elevated caspase 8 activity downstream of the TNFR1, rather than FAS and TRAIL-R. On PARP inhibition, the NF-κB signaling pathway was activated, leading to increased secretion of TNF-α and subsequent initiation of the TNFR1-caspase 8 cascade. Impeding pyroptosis through the depletion of Gsdme significantly compromised the tumor-suppressing effects of PARP inhibition and undermined the anti-immune response in the syngeneic ID8 mouse model. Conclusions: PARPis induce a specific type of ICD called pyroptosis via TNF-caspase 8-GSDMD/E axis, resulting in an inflamed TIME and augmentation of tumor-targeting immune responses. These findings deepen our understanding of PARPis activities and point toward a promising avenue for synergizing PARPis with immunotherapeutic interventions. Trial registration number: NCT04507841.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。