5-Aminolevulinic acid/sodium ferrous citrate enhanced the antitumor effects of programmed cell death-ligand 1 blockade by regulation of exhausted T cell metabolism in a melanoma model

5-氨基乙酰丙酸/柠檬酸亚铁钠通过调节黑色素瘤模型中耗竭的 T 细胞代谢增强了程序性细胞死亡配体 1 阻断的抗肿瘤作用

阅读:5
作者:Xin Hu, Weitao Que, Hiroshi Hirano, Zhidan Wang, Naoko Nozawa, Takuya Ishii, Masahiro Ishizuka, Hidenori Ito, Kiwamu Takahashi, Motowo Nakajima, Tohru Tanaka, Ping Zhu, Wen-Zhi Guo, Xiao-Kang Li

Abstract

Mitochondria are key cytoplasmic organelles. Their activation is critical for the generation of T cell proliferation and cytotoxicity. Exhausted tumor-infiltrating T cells show a decreased mitochondrial function and mass. 5-Aminolevulinic acid (5-ALA), a natural amino acid that is only produced in the mitochondria, has been shown to influence metabolic functions. We hypothesized that 5-ALA with sodium ferrous citrate (SFC) might provide metabolic support for tumor-infiltrating T cells. In a mouse melanoma model, we found that 5-ALA/SFC with a programmed cell death-ligand 1 (PD-L1) blocking Ab synergized tumor regression. After treatment with 5-ALA/SFC and anti-PD-L1 Ab, tumor infiltrating lymphocytes (TILs) were not only competent for the production of cytolytic particles and cytokines (granzyme B, interleukin-2, and γ-interferon) but also showed enhanced Ki-67 activity (a proliferation marker). The number of activated T cells (PD-1+ Tim-3- ) was also significantly increased. Furthermore, we found that 5-ALA/SFC activated the mitochondrial functions, including the oxygen consumption rate, ATP level, and complex V expression. The mRNA levels of Nrf-2, HO-1, Sirt-1, and PGC-1α and the protein levels of Sirt-1 were upregulated by treatment with 5-ALA/SFC. Taken together, our findings revealed that 5-ALA/SFC could be a key metabolic regulator in exhausted T cell metabolism and suggested that 5-ALA/SFC might synergize with anti-PD-1/PD-L1 therapy to boost the intratumoral efficacy of tumor-specific T cells. Our study not only revealed a new aspect of immune metabolism, but also paved the way to develop a strategy for combined anti-PD-1/PD-L1 cancer immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。