Non-thermal atmospheric pressure plasma induces selective cancer cell apoptosis by modulating redox homeostasis

非热大气压等离子体通过调节氧化还原稳态诱导选择性癌细胞凋亡

阅读:5
作者:Ju Hyun Yun, Yoon Hee Yang, Chang Hak Han, Sung Un Kang #, Chul-Ho Kim #

Background

Anticancer treatments

Conclusions

Our study demonstrates that NTAPP induces selective cell death in fibrosarcoma cells through the downregulation of the NRF2-induced ROS scavenger system and inhibition of autophagy. These findings suggest NTAPP's potential as a cancer therapy that minimizes damage to normal cells while effectively targeting cancer cells.

Methods

We treated HT1080 fibrosarcoma cells with NTAPP and assessed the intracellular levels of mitochondria-derived reactive oxygen species (ROS), mitochondrial function, and cell death mechanisms. We employed N-acetylcysteine to investigate ROS's role in NTAPP-induced cell death. Additionally, single-cell RNA sequencing was used to compare gene expression in NTAPP-treated HT1080 cells and human normal fibroblasts (NF). Western blotting and immunofluorescence staining examined the expression and nuclear translocation of nuclear factor erythroid 2-related factor 2 (NRF2), a key antioxidant gene transcription factor. We also evaluated autophagy activity through fluorescence staining and transmission electron microscopy.

Results

NTAPP treatment increased ROS levels and induced mitochondrial dysfunction, leading to apoptosis in HT1080 cells. The involvement of ROS in selective cancer cell death was confirmed by N-acetylcysteine treatment. Distinct gene expression patterns were observed between NTAPP-treated NF and HT1080 cells, with NF showing upregulated antioxidant gene expression. Notably, NRF2 expression and nuclear translocation increased in NF but not in HT1080 cells. Furthermore, autophagy activity was significantly higher in normal cells compared to cancer cells. Conclusions: Our study demonstrates that NTAPP induces selective cell death in fibrosarcoma cells through the downregulation of the NRF2-induced ROS scavenger system and inhibition of autophagy. These findings suggest NTAPP's potential as a cancer therapy that minimizes damage to normal cells while effectively targeting cancer cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。