Plantamajoside inhibits the proliferation and epithelial-to-mesenchymal transition in hepatocellular carcinoma cells via modulating hypoxia-inducible factor-1α-dependent gene expression

车前草苷通过调节缺氧诱导因子-1α依赖性基因表达抑制肝细胞癌细胞增殖和上皮间质转化

阅读:11
作者:Wenzhe Yin, Jun Xu, Chao Li, Xiankui Dai, Tong Wu, Jifeng Wen

Abstract

As a potential antitumor herbal medicine, plantamajoside (PMS) benefits the treatment of many human malignances. However, the role of PMS in the progression of hepatocellular carcinoma (HCC) and the related molecular mechanisms is still unknown. Here, we proved that the cell viabilities of HepG2 cells were gradually decreased with the increasing concentrations of CoCl2 and/or PMS via cell counting kit-8 assay. Meanwhile, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and western blot assays were used to further confirm that PMS inhibited the CoCl2 -induced cell proliferation in HepG2 cells via suppressing the Ki67 and proliferating cell nuclear antigen expressions. We also performed wound-healing and transwell assays and demonstrated that PMS inhibited CoCl2 -induced migration and invasion in HepG2 cells via suppressing the epithelial-mesenchymal transition (EMT) process. In addition, the use of 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole further proved that PMS inhibited the malignant biological behaviors of HepG2 cells under hypoxic condition by suppressing the hypoxia-inducible factor-1α (HIF-1α) expression. Besides, we further confirmed that PMS suppressed the growth and metastasis of implanted tumors in vivo. Given that PMS suppressed the proliferation and EMT induced by CoCl2 in HCC cells via downregulating HIF-1α signaling pathway, we provided evidence that PMS might be a novel anti-cancer drug for HCC treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。