RNA-seq analysis identifies age-dependent changes in expression of mRNAs - encoding N-glycosylation pathway enzymes in mouse gonadotropes

RNA-seq 分析可识别小鼠促性腺激素中编码 N-糖基化途径酶的 mRNA 表达的年龄依赖性变化

阅读:5
作者:Rosemary McDonald, Mark Larsen, Zhenghui Liu, Siddesh Southekal, James Eudy, Chittibabu Guda, T Rajendra Kumar

Abstract

Follicle-stimulating hormone (FSH) is a glycoprotein that is assembled as a heterodimer of α/β subunits in gonadotropes. Each subunit contains two N-glycan chains. Our previous in vivo genetic studies identified that at least one N-glycan chain must be present on the FSHβ subunit for efficient FSH dimer assembly and secretion. Moreover, macroheterogeneity observed uniquely on human FSHβ results in ratiometric changes in age-specific FSH glycoforms, particularly during menopausal transition. Despite the recognition of many prominent roles of sugars on FSH including dimer assembly and secretion, serum half-life, receptor binding and signal transduction, the N-glycosylation machinery in gonadotropes has never been defined. Here, we used a mouse model in which gonadotropes are GFP-labeled in vivo and achieved rapid purification of GFP+ gonadotropes from pituitaries of female mice at reproductively young, middle, and old ages. We identified by RNA-seq analysis 52 mRNAs encoding N-glycosylation pathway enzymes expressed in 3- and 8-10-month-old mouse gonadotropes. We hierarchically mapped and localized the enzymes to distinct subcellular organelles within the N-glycosylation biosynthetic pathway. Of the 52 mRNAs, we found 27 mRNAs are differentially expressed between the 3- and 8-10-month old mice. We subsequently selected 8 mRNAs which showed varying changes in expression for confirmation of abundance in vivo via qPCR analysis, using more expanded aging time points with distinct 8-month and 14-month age groups. Real time qPCR analysis indicated dynamic changes in expression of N-glycosylation pathway enzyme-encoding mRNAs across the life span. Notably, computational analysis predicted the promoters of genes encoding these 8 mRNAs contain multiple high probability binding sites for estrogen receptor-1 and progesterone receptor. Collectively, our studies define the N-glycome and identify age-specific dynamic changes in mRNAs encoding N-glycosylation pathway enzymes in mouse gonadotropes. Our studies suggest the age-related decline in ovarian steroids may regulate expression of N-glycosylation enzymes in mouse gonadotropes and explain the age-related N-glycosylation shift previously observed on human FSHβ subunit in pituitaries of women.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。