Tributyrin administration improves intestinal development and health in pre-weaned dairy calves fed milk replacer

三丁酸甘油酯可改善饲喂代乳品的断奶前犊牛的肠道发育和健康

阅读:8
作者:Shuai Liu, Junda Wu, Zhaohai Wu, Gibson Maswayi Alugongo, Muhammad Zahoor Khan, Jinghui Li, Jianxin Xiao, Zhiyuan He, Yulin Ma, Shengli Li, Zhijun Cao

Abstract

Butyrate and its derivatives possess various nutritional and biological benefits for mammals, whereas its effects on dairy calves have not been well characterized. This study evaluated the effects of tributyrin administration on blood immune, intestinal immune and barrier functions, and microbial composition of pre-weaned dairy calves. Twenty newborn Holstein bull calves were randomly assigned into a control group (no tributyrin supplementation, CON; n = 10) or a treatment group (supplemented with tributyrin at 2 g/L of milk, TRB; n = 10). The results showed that diarrhea frequency was decreased significantly by tributyrin administration from d 29 to 56 (P < 0.001) and the whole period (P = 0.003, d 1 to 56) though no significant effects were observed on growth performance. For blood metabolites, tributyrin administration significantly reduced the concentration of interleukin-1β (IL-1β) on d 28 (P = 0.001) and tended to reduce the concentration of serum amyloid A on d 56 (P = 0.079), whereas serum oxidative status parameters were not affected. For intestinal development, tributyrin administration increased the villus height (P < 0.001) and the ratio of villus height to crypt depth (P = 0.046) in the jejunum, and the villus height in the ileum (P = 0.074). Furthermore, toll-like receptor 2 (TRL2, P = 0.045) and IL-1β (P = 0.088) gene expressions were downregulated, while claudin-4 (P = 0.022) gene expression was upregulated in the jejunum following tributyrin administration. In the ileum, claudin-4 (P = 0.029) and G-protein coupled receptor 41 (P = 0.019) gene expressions were upregulated in the TRB group compared to CON. No significantly higher abundances of microbiota were found in the jejunum or ileum of calves in the CON group. In the TRB group, supplementing tributyrin significantly increased the abundance of short-chain fatty acid (SCFA)-producing bacteria, including Ruminococcaceae, Lachnospiraceae, Prevotella and Rikenellaceae (LDA >3.5, P < 0.05), which was negatively associated with inflammatory gene expression (TLR2 and IL-1β) but positively associated with intestinal barrier genes (claudin-4) and morphological parameters (P < 0.05). In conclusion, supplementing tributyrin in milk replacer could improve intestinal development and health of pre-weaned dairy calves by stimulating SCFA-producing bacteria colonization, enhancing intestinal barrier functions and suppressing inflammatory responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。