Morphological analysis of embryonic cerebellar grafts in SCA2 mice

SCA2小鼠胚胎小脑移植的形态学分析

阅读:7
作者:Zdenka Purkartova, Jan Tuma, Martin Pesta, Vlastimil Kulda, Lucie Hajkova, Ondrej Sebesta, Frantisek Vozeh, Jan Cendelin

Abstract

SCA2 transgenic mice are thought to be a useful model of human spinocerebellar ataxia type 2. There is no effective therapy for cerebellar degenerative disorders, therefore neurotransplantation could offer hope. The aim of this work was to assess the survival and morphology of embryonic cerebellar grafts transplanted into the cerebellum of adult SCA2 mice. Four month-old homozygous SCA2 and negative control mice were treated with bilateral intracerebellar injections of an enhanced green fluorescent protein-positive embryonic cerebellar cell suspension. Graft survival and morphology were examined three months later. Graft-derived Purkinje cells and the presence of astrocytes in the graft were detected immunohistochemically. Nissl and hematoxylin-eosin techniques were used to visualize the histological structure of the graft and surrounding host tissue. Grafts survived in all experimental mice; no differences in graft structure, between SCA2 homozygous and negative mice, were found. The grafts contained numerous Purkinje cells but long distance graft-to-host axonal connections to the deep cerebellar nuclei were rarely seen. Relatively few astrocytes were found in the center of the graft. No signs of inflammation or tissue destruction were seen in the area around the grafts. Despite good graft survival and the presence of graft-derived Purkinje cells, the structure of the graft did not seem to promise any significant specific functional effects. We have shown that the graft is available for long-term experiments. Nevertheless, it would be beneficial to search for ways of enhancement of connections between the graft and host.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。