M1/M2-macrophage phenotypes regulate renal calcium oxalate crystal development

M1/M2 巨噬细胞表型调节肾脏草酸钙晶体发育

阅读:4
作者:Kazumi Taguchi, Atsushi Okada, Shuzo Hamamoto, Rei Unno, Yoshinobu Moritoki, Ryosuke Ando, Kentaro Mizuno, Keiichi Tozawa, Kenjiro Kohri, Takahiro Yasui

Abstract

In our previous report, M2-macrophage (Mφs) deficient mice showed increased renal calcium oxalate (CaOx) crystal formation; however, the role of Mφs-related-cytokines and chemokines that affect kidney stone formation remains unknown. Here, we investigated the role of M1/M2s in crystal development by using in vitro and in vivo approaches. The crystal phagocytic rate of bone marrow-derived M2Mφs was higher than that of bone marrow-derived Mφs and M1Mφs and increased on co-culture with renal tubular cells (RTCs). However, the amount of crystal attachment on RTCs reduced on co-culture with M2Mφs. In six hyperoxaluric C57BL/6J mice, M1Mφ transfusion and induction by LPS and IFN-γ facilitated renal crystal formation, whereas M2Mφ transfusion and induction by IL-4 and IL-13 suppressed renal crystal formation compared with the control. These M2Mφ treatments reduced the expression of crystal-related genes, such as osteopontin and CD44, whereas M1Mφ treatment increased the expression of pro-inflammatory and adhesion-related genes such as IL-6, inducible NOS, TNF-α, C3, and VCAM-1. The expression of M2Mφ-related genes was lower whereas that of M1Mφ-related genes was higher in papillary tissue of CaOx stone formers. Overall, our results suggest that renal crystal development is facilitated by M1Mφs, but suppressed by M2Mφs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。