Evaluation of a receptor gene responsible for maternal blood IgY transfer into egg yolks using bursectomized IgY-depleted chickens

使用切除 IgY 的鸡评估负责母血 IgY 转移到蛋黄中的受体基因

阅读:4
作者:A Murai, T Hamano, M Kakiuchi, M Kobayashi, F Horio

Abstract

In avian species, maternal immunoglobulin Y (IgY) is transferred from the blood to the yolks of maturing oocytes; however, the mechanism underlying this transfer is unknown. To gain insight into the mechanisms of maternal IgY transfer into egg yolks, IgY-depleted chickens were generated by removing the bursa of Fabricius (bursectomy) during egg incubation, and their egg production and IgY transport ability into egg yolks were determined. After hatching, blood IgY concentrations of the bursectomized chickens decreased gradually until sexual maturity, whereas those of IgA remained low from an early stage of growth (from at least 2 wk of age). Chickens identified as depleted in IgY through screening of blood IgY and IgA concentrations were raised to sexual maturity. At 20 wk of age, both blood and egg yolk IgY concentrations in the IgY-depleted group were 600-fold lower than those of the control group, whereas egg production did not differ between the groups. Intravenously injected, digoxigenin-labeled IgY uptake into the egg yolk was approximately 2-fold higher in the IgY-depleted chickens than in the controls, suggesting that IgY depletion may enhance IgY uptake in maturing oocytes. DNA microarray analysis of the germinal disc, including the oocyte nucleus, revealed that the expression levels of 73 genes were upregulated more than 1.5-fold in the IgY-depleted group, although we could not identify a convincing candidate gene for the IgY receptor. In conclusion, we successfully raised IgY-depleted chickens presenting a marked reduction in egg yolk IgY. The enhanced uptake of injected IgY into the egg yolks of the IgY-depleted chickens supports the existence of a selective IgY transport mechanism in maturing oocytes and ovarian follicles in avian species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。