Yangjing Capsule Can Improve the Function of the Testicular Angiogenesis through Activating VEGFA/eNOS Signaling Pathway

养精胶囊通过激活VEGFA/eNOS信号通路促进睾丸血管生成

阅读:3
作者:Baofang Jin, Dalin Sun, Weihang Dong, Bing Chen, Weimin Deng, Bin Cai, Yugui Cui, Yihan Jin, Jianguo Liu, Li Tong, Ping Wu

Background

The testicular microcirculation was an important aspect of testicular physiology and it offered a stable environment for the transport of nutrients and secretary products in the testis. Yangjing capsule (YC), a traditional Chinese compound herbal prescription, has been proved as an effective drug to ameliorate spermatogenesis, promote testosterone synthesis in vivo, and cure spermatogenesis in clinical practice.

Methods

Balb/c mice were randomly divided into five groups: control, CP, CP plus YC (630 mg/kg), CP plus YC (1260 mg/kg), and CP plus YC (2520 mg/kg). After 30 days, mice were sacrificed and the expressions of endothelial marker CD34+, angiogenic marker VEGFA, VEGFR1, VEGFR2, and eNOS in the testes of the mice were examined; moreover, Leydig cell line MLTC-1 cells were cultured and treated with different concentrations of YC extracts (YCE), and the expressions of VEGFA, VEGFR1, VEGFR2, and eNOS, as well as the secretion of NO, were evaluated.

Objective

This study was aimed at understanding the potential mechanisms of YC exerting angiogenic effects in the mouse spermatogenesis dysfunction model induced by cyclophosphamide (CP) and MLTC-1 cells. Materials and

Results

We observed that YC significantly increased the expressions of VEGFA, VEGFR1, VEGFR2, and eNOS in testes of CP-treated mice; moreover, YCE has led to increased expressions of VEGFA, VEGFR1, VEGFR2, and eNOS and secretion of NO in MLTC-1 in vitro. These data suggested that the YC might be an alternative treatment for the dysfunction of testicular microcirculation by promoting the angiogenesis in the testis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。