Mechanical Loading Differentially Affects Osteocytes in Fibulae from Lactating Mice Compared to Osteocytes in Virgin Mice: Possible Role for Lacuna Size

机械负荷对哺乳小鼠腓骨骨细胞的影响与对未受精小鼠骨细胞的影响不同:可能与骨陷窝大小有关

阅读:8
作者:Haniyeh Hemmatian, Rozita Jalali, Cornelis M Semeins, Jolanda M A Hogervorst, G Harry van Lenthe, Jenneke Klein-Nulend, Astrid D Bakker

Abstract

Hormonal changes during lactation are associated with profound changes in bone cell biology, such as osteocytic osteolysis, resulting in larger lacunae. Larger lacuna shape theoretically enhances the transmission of mechanical signals to osteocytes. We aimed to provide experimental evidence supporting this theory by comparing the mechanoresponse of osteocytes in the bone of lactating mice, which have enlarged lacunae due to osteocytic osteolysis, with the response of osteocytes in bone from age-matched virgin mice. The osteocyte mechanoresponse was measured in excised fibulae that were cultured in hormone-free medium for 24 h and cyclically loaded for 10 min (sinusoidal compressive load, 3000 µε, 5 Hz) by quantifying loading-related changes in Sost mRNA expression (qPCR) and sclerostin and β-catenin protein expression (immunohistochemistry). Loading decreased Sost expression by ~ threefold in fibulae of lactating mice. The loading-induced decrease in sclerostin protein expression by osteocytes was larger in lactating mice (55% decrease ± 14 (± SD), n = 8) than virgin mice (33% decrease ± 15, n = 7). Mechanical loading upregulated β-catenin expression in osteocytes in lactating mice by 3.5-fold (± 0.2, n = 6) which is significantly (p < 0.01) higher than the 1.6-fold increase in β-catenin expression by osteocytes in fibulae from virgin mice (± 0.12, n = 4). These results suggest that osteocytes in fibulae from lactating mice with large lacunae may respond stronger to mechanical loading than those from virgin mice. This could indicate that osteocytes residing in larger lacuna show a stronger response to mechanical loading.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。