The RpTOE1- RpFT Module Is Involved in Rejuvenation during Root-Based Vegetative Propagation in Robinia pseudoacacia

RpTOE1-RpFT 模块参与刺槐根系营养繁殖过程中的复壮

阅读:12
作者:Zijie Zhang, Jie Liu, Sen Cao, Qi Guo, Yuhan Sun, Dongsheng Niu, Cui Long, Yingming Fan, Yun Li

Abstract

Vegetative propagation is an important method of reproduction and rejuvenation in horticulture and forestry plants with a long lifespan. Although substantial juvenile clones have been obtained through the vegetative propagation of ornamental plants, the molecular factors that regulate rejuvenation during vegetative propagation are largely unknown. Here, root sprouting and root cutting of Robinia pseudoacacia were used as two vegetative propagation methods. From two consecutive years of transcriptome data from rejuvenated seedlings and mature trees, one gene module and one miRNA module were found to be specifically associated with rejuvenation during vegetative propagation through weighted gene co-expression network analysis (WGCNA). In the gene module, a transcription factor-encoding gene showed high expression during vegetative propagation, and it was subsequently named RpTOE1 through homology analysis. Heterologous overexpression of RpTOE1 in wild-type Arabidopsis and toe1 toe2 double mutants prolonged the juvenile phase. The qRT-PCR results predicted RpFT to be a downstream gene that was regulated by RpTOE1. Further investigation of the protein-DNA interactions using yeast one-hybrid, electrophoretic mobility shift, and dual luciferase reporter assays confirmed that RpTOE1 negatively regulated RpFT by binding directly to the TOE binding site (TBS)-like motif on its promoter. On the basis of these results, we showed that the high expression of RpTOE1 during vegetative propagation and its inhibition of RpFT played a key role in the phase reversal of R. pseudoacacia.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。