Endogenous DKK1 and FRZB Regulate Chondrogenesis and Hypertrophy in Three-Dimensional Cultures of Human Chondrocytes and Human Mesenchymal Stem Cells

内源性 DKK1 和 FRZB 调节人类软骨细胞和人类间充质干细胞三维培养中的软骨形成和肥大

阅读:5
作者:Leilei Zhong, Xiaobin Huang, Emilie Dooms Rodrigues, Jeroen C H Leijten, Theo Verrips, Mohamed El Khattabi, Marcel Karperien, Janine N Post

Abstract

Hypertrophic differentiation occurs during in vitro chondrogenesis of mesenchymal stem cells (MSCs), decreasing the quality of the cartilage construct. Previously we identified WNT pathway antagonists Dickkopf 1 homolog (DKK1) and frizzled-related protein (FRZB) as key factors in blocking hypertrophic differentiation of human MSCs (hMSCs). In this study, we investigated the role of endogenously expressed DKK1 and FRZB in chondrogenesis of hMSC and chondrocyte redifferentiation and in preventing cell hypertrophy using three relevant human cell based systems, isolated hMSCs, isolated primary human chondrocytes (hChs), and cocultures of hMSCs with hChs for which we specifically designed neutralizing nano-antibodies. We selected and tested variable domain of single chain heavy chain only antibodies (VHH) for their ability to neutralize the function of DKK1 or FRZB. In the presence of DKK1 and FRZB neutralizing VHH, glycosaminoglycan and collagen type II staining were significantly reduced in monocultured hMSCs and monocultured chondrocytes. Furthermore, in cocultures, cells in pellets showed hypertrophic differentiation. In conclusion, endogenous expression of the WNT antagonists DKK1 and FRZB is necessary for multiple steps during chondrogenesis: first DKK1 and FRZB are indispensable for the initial steps of chondrogenic differentiation of hMSCs, second they are necessary for chondrocyte redifferentiation, and finally in preventing hypertrophic differentiation of articular chondrocytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。