Analysis of a lung defect in autophagy-deficient mouse strains

自噬缺陷小鼠的肺缺陷分析

阅读:8
作者:Heesun Cheong, Junmin Wu, Linda K Gonzales, Susan H Guttentag, Craig B Thompson, Tullia Lindsten

Abstract

Yeast Atg1 initiates autophagy in response to nutrient limitation. The Ulk gene family encompasses the mammalian orthologs of yeast ATG1. We created mice deficient for both Ulk1 and Ulk2 and found that the mice die within 24 h of birth. When found alive, pups exhibited signs of respiratory distress. Histological sections of lungs of the Ulk1/2 DKO pups showed reduced airspaces with thickened septae. A similar defect was seen in Atg5-deficient pups as both Ulk1/2 DKO and Atg5 KO lungs show numerous glycogen-laden alveolar type II cells by electron microscopy, PAS staining, and increased levels of glycogen in lung homogenates. No abnormalities were noted in expression of genes encoding surfactant proteins but the ability to incorporate exogenous choline into phosphatidylcholine, the major phospholipid component of surfactant, was increased in comparison to controls. Despite this, there was a trend for total phospholipid levels in lung tissue to be lower in Ulk1/2 DKO and Atg5 KO compared with controls. Autophagy was abundant in lung epithelial cells from wild-type mice, but lacking in Atg5 KO and Ulk1/2 DKO mice at P1. Analysis of the autophagy signaling pathway showed the existence of a negative feedback loop between the ULK1 and 2 and MTORC1 and 2, in lung tissue. In the absence of autophagy, alveolar epithelial cells are unable to mobilize internal glycogen stores independently of surfactant maturation. Together, the data suggested that autophagy plays a vital role in lung structural maturation in support of perinatal adaptation to air breathing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。